
UCRL-PROC-203343

Implementation of Frictional Contact
Conditions in Surface to Surface, Mortar
Based Computational Frameworks

T. A. Laursen, B. Yang, M. A. Puso

April 2, 2004

European Congress on Compuational Methods in Applied
Sciences and Engineering
Jyvaskyla, Finland
July 24, 2004 through July 28, 2004



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 

labass1
This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.



European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS 2004
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Abstract. A number of recent works have established the mortar technique as an accu-

rate and robust spatial discretization method for contact problems in computational solid

mechanics. Since methods based on this idea rely on an integral, non-local representation

of the contact operators, their formulation is somewhat more involved than is true for

more traditional “point to surface” contact algorithms; in particular, the integral projec-

tions have nontrivial linearizations in the fully large deformation context. In this work, we

concentrate on another aspect of formulations of this type—definition and implementation

of frictional contact operators within the mortar contact framework. Issues associated with

frame indifference of frictional tractions and kinematics are discussed, and a numerical

demonstration of the technique is given.
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1 INTRODUCTION

Several authors in recent years (see [1, 3]) have demonstrated the utility of the mortar
framework in including accurate and stable spatial discretizations of contact phenomena
in finite element calculations. However, such algorithms have been robustly implemented
only recently (see [4, 5]) in a true large deformation, large sliding context. Many of the
challenges associated with the large sliding problem have to do with the linearization of
the mortar projection operators. Since in large sliding these projection operators depend
strongly on the position of one surface relative to the other, the operators must be dif-
ferentiated to obtain a consistent tangent stiffness that will facilitate effective implicit
finite element simulations. The considerable effort and expense associated with this lin-
earization has been shown to lead to a highly robust contact algorithm, as the nonlocal
characteristics of the mortar contact operators gives rise not only to enhanced spatial
accuracy of the scheme, but also to considerable smoothing of many of the discontinuities
which tend to plague Newton-Raphson treatments of contact.

In this work, we focus specifically on issues associated with the implementation of
friction within the surface to surface contact framework. In particular, implementation of
frictional conditions requires appropriate notions of relative velocity and rates of frictional
tractions, in which frame indifference must be assured. We discuss the adaptation of frame
indifferent formulations of frictional contact to the nonlocal surface to surface framework,
and demonstrate the effectiveness of these formulations in a two dimensional application.

2 GENERAL PROBLEM DEFINITION

We consider a two body contact problem, with the bodies in question (indexed by (i))
assumed to contact sometime during the time interval [0, T ] of interest. We seek to find
the motions ϕ(i) of the two bodies (i), defined over their reference domains Ω(i), for all
times t in this interval. The virtual work principle for the two body contact problem in
large deformations can be written at any time t by appealing to admissible variations ∗

ϕ
(i)

via

G(ϕ, ∗
ϕ) :=

2
∑

i=1

G(i)(ϕ(i), ∗
ϕ
(i))

=
2
∑

i=1

{
∫

Ω(i)

[

ρ0
∗
ϕ
(i)
·AAA(i) +Grad ∗

ϕ : PPP (i)
]

dΩ

−

∫

Ω(i)

∗
ϕ
(i)
·FFF (i)dΩ−

∫

Γ
(i)
σ

∗
ϕ
(i)
· T̄TT

(i)
dΓ

}

−

2
∑

i=1

∫

Γ
(i)
c

∗
ϕ
(i)
· ttt(i)dΓ = 0

= Gint,ext(ϕ, ∗
ϕ) +Gc(ϕ, ∗

ϕ) = 0.

(1)
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In (1), Gint,ext(ϕ, ∗
ϕ) is the sum of the virtual work arising from the internal and external

forces, while the notation Gc(ϕ, ∗
ϕ) denotes the virtual work associated with the contact

tractions. The notationAAA(i) has been employed to denote the material acceleration field in
body (i) (in the event that inertial effects are present), FFF (i) denotes the body force in body

(i), PPP (i) denotes the Piola tractions, and T̄TT
(i)

denotes the prescribed (reference) tractions

that may be prescribed over some portion Γ
(i)
σ of each body’s boundary, assumed to be

nonintersecting with both the Dirichlet portion of the boundary of the body in question,
and the subset Γ

(i)
c of the body’s surface where contact interaction may occur (with Piola

tractions t(i) acting over those portions of the boundary).
We proceed to discretize the contact interaction by writing the contact virtual work as

Gc(ϕ, ∗
ϕ) = −

2
∑

i=1

∫

Γ
(i)
c

∗
ϕ
(i)
· ttt(i)dΓ

= Gcm(ϕ, ∗
ϕ)

= −
2
∑

i=1

∫

γ
(i)
c

∗
ϕ
(i)
· λ(i)dγ,

(2)

where Gcm(ϕ, ∗
ϕ) will be used to denote the mortar element version of the contact virtual

work. The notation γ
(i)
c indicates the current configuration of Γ

(i)
c , so that the mortar mul-

tiplier λ(i) is utilized to mean the Cauchy contact traction. Balance of linear momentum
across the contact interface implies that (2) simplifies to:

Gcm(ϕ, ∗
ϕ) := −

∫

γ
(1)
c

λ
(1) ·

(

∗
ϕ
(1)
−

∗
ϕ
(2)
)

dγ. (3)

To draw the correspondence with the mortar literature, the slave surface γ
(1)
c is referred

to as the nonmortar surface, as it is the one where the Lagrange multipliers will be
interpolated, while the master surface γ

(2)
c is called the mortar surface.

2.1 Mortar Discretization of the Contact Integral

The overall structure of the mortar framework approach to contact is developed by
writing expansions for the above contact surface fields in terms of finite element shape
functions, and substituting the results into (3). The discretized multipliers, the deforma-
tion fields and their variations on the contact surface may be interpolated as

λ
h(XXX) =

ns
∑

A=1

N
(1)
A

(

ξ(1)(XXX)
)

λA, (4)

ϕ
(1)h(XXX) =

ns
∑

D=1

N
(1)
D

(

ξ(1)(XXX)
)

ϕ
(1)
D , (5)
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ϕ
(2)h(ȲYY ) =

nm
∑

E=1

N
(2)
E

(

ξ(2)(ȲYY )
)

ϕ
(2)
E , (6)

∗
ϕ
(1)h(XXX) =

ns
∑

B=1

N
(1)
B

(

ξ(1)(XXX)
)

∗
ϕ
(1)
B , (7)

∗
ϕ
(2)h(ȲYY ) =

nm
∑

C=1

N
(2)
C

(

ξ(2)(ȲYY )
)

∗
ϕ
(2)
C , (8)

where A, B and D are indices associated with slave (nonmortar) nodes, and C and E

are indices associated with master (mortar) nodes. In these expressions, the notations

for the shape functions N
(i)
• are taken to mean the restriction of the finite element shape

functions associated with either body (1) or (2) to the appropriate contact boundary.
Other notations in (4)–(8) include λA for the nodal values of contact tractions at slave

nodes; ∗
ϕ
(1)
B and ∗

ϕ
(2)
C for nodal values of ∗

ϕ
(1)h and ∗

ϕ
(2)h ; and ϕ

(1)
D and ϕ

(2)
E for nodal values

of ϕ(1)h and ϕ(2)h . The limits on the sums, ns and nm, are numbers of nodes on the slave
(non-mortar) and master (mortar) surfaces, respectively.

Substitution of equations (4), (7) and (8) into (3) gives

Gcm(ϕh, ∗
ϕ
h
) = −

∑

A

∑

B

∑

C

λA ·

[

n
(1)
AB

∗
ϕ
(1)
B − n

(2)
AC

∗
ϕ
(2)
C

]

, (9)

where the operators n
(1)
AB and n

(2)
AC are defined via:

n
(1)
AB =

∫

γ
(1)h

c

N
(1)
A N

(1)
B dγ (10)

and

n
(2)
AC =

∫

γ
(1)h

c

N
(1)
A N

(2)
C dγ (11)

Notably, it is the computation of these operators, as well as their linearizations, which
constitutes most of the complexity of implementing a mortar formulation of contact. In

particular, the expression for (11) involves a dependence of the surface projection of γ
(2)h

c

onto γ
(1)h

c by virtue of the potentially large sliding that occurs. Detailed discussion of
these implementational details will not be given here; the interested reader is referred to
[4, 5] for details.

The normal and tangential portions of the contact operator are now exposed by splitting
λA into normal and frictional parts:

λA = λNA
+ λTA . (12)

The specification of the contact treatment is completed by giving constitutive expressions
for λNA

and λTA in terms of the kinematics of the problem.
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2.2 Normal contact constraints

As demonstrated previously in [4], the normal part of the contact traction may be
represented as

λNA
= −λNA

nnnA (no sum) (13)

where λNA
represents the contact pressure at node A. It is subject to Kuhn-Tucker con-

ditions via
λNA

≥ 0

gA ≤ 0

λNA
gA = 0

(14)

where the mortar projected gap gA at slave node A is defined as

gA = nnnA · gA,

gA :=
∑

B

∑

C

[

n
(1)
ABϕϕϕ

(1)
B − n

(2)
ACϕϕϕ

(2)
C

]

. (15)

Equation (15) is written in terms of a nodal normal nA, based at the slave node. Typically,
this nodal normal is computed as some type of weighted average of the neighboring facet
normals; ideas of this type and explicit expressions for the averages may be found in [4]
and [5]. One may either treat equations (14) directly by using a Lagrange multiplier
formulation, or consider appropriate penalty or augmented Lagrange alternatives. We
have considered all three implementations in our work, although the results presented
here were obtained using the penalty method.

2.3 Frictional contact conditions

The implementation of friction we consider here will be written in terms of a classical
penalization of the Coulomb friction conditions, although other choices (for example,
augmented Lagrangian) are certainly possible. Such a regularization is expressed via

LvλT = εT



vvvT − γ̇
λT
∥

∥

∥
λT

∥

∥

∥





Φ :=
∥

∥

∥
λT

∥

∥

∥
− µ

∥

∥

∥
λN

∥

∥

∥
≤ 0

γ̇ ≥ 0

Φγ̇ = 0

(16)

where εT is the frictional penalty parameter. LvλT is the Lie derivative of the frictional
traction, and is defined (for example) in a two dimensional problem via

LvλT = λ̇T τ (17)
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where τ is the unit tangential base vector. In (17), the time derivative contains material
time derivative of components of λT only (i.e. no terms containing time derivatives of
base vectors are included). It is fact that makes it a frame indifferent object.

To assure that our algorithmic representation of (16) is frame indifferent, the key
additional detail needed is an algorithmic representation of the tangential relative velocity
vvvT within the mortar framework. In the continuum mechanical (i.e., non-algorithmic)
case, the tangential component of the relative velocity is not frame indifferent when the
gap g differs from zero. Frame indifference is restored in that case by adding in a dilatant
portion to the tangential velocity measure (see [2]). The approach used here to assure
frame indifference is similar.

To demonstrate the idea, we may look at the time continuous case first, and write the
tangential component of the mortar projected tangential velocity at node A, which is not
frame indifferent:

v
nonobj
TA

:= −

[

∑

B

n
(1)
ABϕ̇

(1)
B −

∑

C

n
(2)
ACϕ̇

(2)
C

]

· τA ⊗ τA. (18)

In (18), we have assumed two dimensions for simplicity, and written the tangent vector
at node A as τA = e3×nA. Objectivity is restored by including in this definition the rate
of a mortar projected notion of the distance between the two bodies (gA, as is exposed in
(15)), which goes to zero when perfect sliding occurs:

vTA := −

[

∑

B

n
(1)
ABϕ̇

(1)
B −

∑

C

n
(2)
ACϕ̇

(2)
C − ġA

]

· τA ⊗ τA. (19)

One may show by direct calculation that (19) can be exactly represented via

vvvTA = −
[

ṅ
(2)
ACϕϕϕ

(2)
C − ṅ

(1)
ABϕϕϕ

(1)
B

]

· τA ⊗ τA (20)

where ṅ
(2)
AC and ṅ

(1)
AB are time derivatives of the mortar integrals. It is the tangential

velocity in (20) that we will numerically approximate in our numerical formulation.
In this paper, a trial state-return map strategy is employed to determine the Coulomb

frictional traction, with the constitutive law being obtained by application of a backward
Euler strategy to the equations obtained by substitution of (20) into (16). As in [2], we
first compute a trial state, assuming no slip during the increment:

λtrialTAn+1
= λTAn − εTτA ·

[

∑

C

(

n
(2)
ACn+1

− n
(2)
ACn

)

ϕϕϕ
(2)
C −

∑

B

(

n
(1)
ABn+1

− n
(1)
ABn

)

ϕϕϕ
(1)
B

]

(21)

and we define a trial value for the slip function via

Φtrial
n+1 =

∥

∥

∥
λ
trial
T

∥

∥

∥
− µ

∥

∥

∥
λN

∥

∥

∥
. (22)
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Then the return map used to define the final frictional traction is given as:

λTAn+1
=







λtrialTAn+1
= λtrialTAn+1

τττA if
(

Φtrial
n+1

)

≤ 0, stick,

µ
∥

∥

∥
λNA

∥

∥

∥
τττA otherwise, slip

. (23)

In these expressions, the subscript n+1 means a state associated with the current iteration
of the n+ 1st load (or time) step, and n is to be associated with the n-th converged load
step.

3 NUMERICAL EXAMPLE

To provide a brief demonstration of the effectiveness of the approach advocated, we
consider a two dimensional example where a block is pressed into an elastic slab and then
slid over the surface. The material for both the block and the slab are assumed to be
Neohookean hyperelastic. The bulk and shear modulus of the slab are K = 63.84 × 107

and G = 26.12 × 107, while the block is taken to be ten times stiffer than the slab.
The geometric properties are shown in Figure 1. The bottom surface of the slab is fixed.
Through displacement control, the top of the block travels p = 1.8 in the vertical direction
from time 0 − 1 and then q = 10 in the horizontal direction from time 1 − 2. The finite
element meshes are shown in Figure 2. The deformations at t = 1.0, t = 1.5 and t = 2.0
are shown in Figure 3. Coulomb friction is considered in this problem, with the coefficient
of friction being µ = 0.3.

The reaction loads computed on the top of the block are shown in Figure 4. It can
be noticed that at time between 1.0 and 1.1 we have to push harder because of the
resistance caused by the contact of the side surface with the slab. Interestingly, the
more traditional node-to-segment contact formulation fails at time 0.66. Particularly
notable is the fact that despite the large deformations featured by this example, the load-
displacement response is relatively smooth and the performance of the solution procedure
is highly robust. In large part, this occurs because of the non-local character of the
contact discretization procedure, which acts to smooth the discontinuities in the contact
kinematics resulting from the faceted finite element discretization of the contact surface.

4 CONCLUSIONS

A method for incorporating friction into mortar-finite element descriptions of large de-
formation contact mechanics has been presented. As has been demonstrated, the frame-
work allows for frame indifferent description of frictional laws, and produces highly robust
contact algorithms even in the context of large deformations and large amounts of relative
sliding.
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Figure 1: The initial configuration of the ironing problem.

Figure 2: The finite element mesh of the ironing problem.
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Figure 3: Deformed configurations for the ironing problem at t = 1.0, t = 2.0 and t = 3.0.
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Figure 4: Computed load vs. time (load parameter) curves; ironing problem.
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